本章需要用到tidyr包
library(plyr)
library(tidyverse)
library(ggplot2)
library(pryr)
tidy data
同一组数据有多种表达方式
tidy data的定义:
- Each variable must have its own column.
- Each observation must have its own row.
- Each value must have its own cell.
为什么要tidy data?
- 有一种一以贯之的数据存储方式;
- 适应于R的向量化;
table1
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table1 %>%
count(year, wt=cases)
## # A tibble: 2 x 2
## year n
## <int> <int>
## 1 1999 250740
## 2 2000 296920
相当于
ddply(table1,"year",function(x) sum(x[["cases"]]))
## year V1
## 1 1999 250740
## 2 2000 296920
Spreading and gathering
得到清洁数据的步骤:
- 指出什么是变量,什么是观测;
- 解决以下两个问题:
- 一个变量下的内容展开到了多个列中;
- 一个观测分散在多个行中;
需要tidyr的工具:
- gather()
- spread()
Gathering
一个常见问题:一些列名不是变量,而是观测值;
table4a
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
每一行有两个观测值,而不是一个。
使用gather函数进行聚合
table4a %>%
gather(`1999`, `2000`, key = "year", value = "cases")
## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Brazil 1999 37737
## 3 China 1999 212258
## 4 Afghanistan 2000 2666
## 5 Brazil 2000 80488
## 6 China 2000 213766
相当于reshape2::melt函数
reshape2::melt(table4a,"country")
## country variable value
## 1 Afghanistan 1999 745
## 2 Brazil 1999 37737
## 3 China 1999 212258
## 4 Afghanistan 2000 2666
## 5 Brazil 2000 80488
## 6 China 2000 213766
再一例
table4b
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
table4b %>%
gather(`1999`, `2000`, key = "year", value = "population")
## # A tibble: 6 x 3
## country year population
## <chr> <chr> <int>
## 1 Afghanistan 1999 19987071
## 2 Brazil 1999 172006362
## 3 China 1999 1272915272
## 4 Afghanistan 2000 20595360
## 5 Brazil 2000 174504898
## 6 China 2000 1280428583
将两个数据框聚合,使用left_join
tidy4a <- table4a %>%
gather(`1999`, `2000`, key = "year", value = "cases")
tidy4b <- table4b %>%
gather(`1999`, `2000`, key = "year", value = "population")
left_join(tidy4a, tidy4b)
## Joining, by = c("country", "year")
## # A tibble: 6 x 4
## country year cases population
## <chr> <chr> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Brazil 1999 37737 172006362
## 3 China 1999 212258 1272915272
## 4 Afghanistan 2000 2666 20595360
## 5 Brazil 2000 80488 174504898
## 6 China 2000 213766 1280428583
Spreading
table2
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
每一个观测被分到了两行里
table2 %>%
spread(key = type, value = count)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
相当于reshape2::dcast
reshape2::dcast(table2,country+year~type)
## Using count as value column: use value.var to override.
## country year cases population
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Separating and uniting
table3
## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
Separate
separate()将一列的内容(字符串)分散到多列
table3 %>%
separate(rate, into = c("cases", "population"))
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
确实方便很多,省略了很多步骤。
table3 %>%
separate(rate, into = c("cases", "population"), sep = "/")
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
sep是正则表达式
但直接转换过来的变量都是字符串,可以让它自动匹配更合适的数据类型
table3 %>%
separate(rate, into = c("cases", "population"), convert = TRUE)
## # A tibble: 6 x 4
## country year cases population
## * <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
也可以给sep传入一个数字向量,代表了seperate的位置
table3 %>%
separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
Unite
seperate的逆运算,将多个列合并为一个列
table5
## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
table5 %>%
unite(new, century, year)
## # A tibble: 6 x 3
## country new rate
## <chr> <chr> <chr>
## 1 Afghanistan 19_99 745/19987071
## 2 Afghanistan 20_00 2666/20595360
## 3 Brazil 19_99 37737/172006362
## 4 Brazil 20_00 80488/174504898
## 5 China 19_99 212258/1272915272
## 6 China 20_00 213766/1280428583
去掉分隔符
table5 %>%
unite(new, century, year, sep = "")
## # A tibble: 6 x 3
## country new rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
缺失值
stocks <- tibble(
year = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
qtr = c( 1, 2, 3, 4, 2, 3, 4),
return = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)
)
stocks
## # A tibble: 7 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 2 0.92
## 6 2016 3 0.17
## 7 2016 4 2.66
- explicitly:显式缺失
- implicitly:隐式缺失
将隐式缺失显式化的方法:spread
stocks %>%
spread(year, return)
## # A tibble: 4 x 3
## qtr `2015` `2016`
## <dbl> <dbl> <dbl>
## 1 1 1.88 NA
## 2 2 0.59 0.92
## 3 3 0.35 0.17
## 4 4 NA 2.66
另外一个显式化的方法:complete,接收几个列,寻找所有的独特组合
stocks %>%
complete(year, qtr)
## # A tibble: 8 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2016 1 NA
## 6 2016 2 0.92
## 7 2016 3 0.17
## 8 2016 4 2.66
一种独特的缺失值情况:缺失代表重复上一行内容
treatment <- tribble(
~ person, ~ treatment, ~response,
"Derrick Whitmore", 1, 7,
NA, 2, 10,
NA, 3, 9,
"Katherine Burke", 1, 4
)
treatment
## # A tibble: 4 x 3
## person treatment response
## <chr> <dbl> <dbl>
## 1 Derrick Whitmore 1 7
## 2 <NA> 2 10
## 3 <NA> 3 9
## 4 Katherine Burke 1 4
这时可以用fill函数填充
treatment %>%
fill(person)
## # A tibble: 4 x 3
## person treatment response
## <chr> <dbl> <dbl>
## 1 Derrick Whitmore 1 7
## 2 Derrick Whitmore 2 10
## 3 Derrick Whitmore 3 9
## 4 Katherine Burke 1 4
案例分析
tidyr的设计思路和dplyr一样:每件小工具完成一个任务,用管道连接。
肺结核数据tidyr::who
names(who)
## [1] "country" "iso2" "iso3" "year"
## [5] "new_sp_m014" "new_sp_m1524" "new_sp_m2534" "new_sp_m3544"
## [9] "new_sp_m4554" "new_sp_m5564" "new_sp_m65" "new_sp_f014"
## [13] "new_sp_f1524" "new_sp_f2534" "new_sp_f3544" "new_sp_f4554"
## [17] "new_sp_f5564" "new_sp_f65" "new_sn_m014" "new_sn_m1524"
## [21] "new_sn_m2534" "new_sn_m3544" "new_sn_m4554" "new_sn_m5564"
## [25] "new_sn_m65" "new_sn_f014" "new_sn_f1524" "new_sn_f2534"
## [29] "new_sn_f3544" "new_sn_f4554" "new_sn_f5564" "new_sn_f65"
## [33] "new_ep_m014" "new_ep_m1524" "new_ep_m2534" "new_ep_m3544"
## [37] "new_ep_m4554" "new_ep_m5564" "new_ep_m65" "new_ep_f014"
## [41] "new_ep_f1524" "new_ep_f2534" "new_ep_f3544" "new_ep_f4554"
## [45] "new_ep_f5564" "new_ep_f65" "newrel_m014" "newrel_m1524"
## [49] "newrel_m2534" "newrel_m3544" "newrel_m4554" "newrel_m5564"
## [53] "newrel_m65" "newrel_f014" "newrel_f1524" "newrel_f2534"
## [57] "newrel_f3544" "newrel_f4554" "newrel_f5564" "newrel_f65"
- country/iso2/iso3 是三个表征国家的变量;
- year 表征时间;
- 从new_sp_m014到newrel_f65,不像是变量,而像是观测值,所以用gather函数收集起来
因为有很多缺失值,所以先将缺失值剔除,看有什么信息
who1 <- who %>%
gather(new_sp_m014:newrel_f65, key = "key", value = "cases", na.rm = TRUE)
who1
## # A tibble: 76,046 x 6
## country iso2 iso3 year key cases
## * <chr> <chr> <chr> <int> <chr> <int>
## 1 Afghanistan AF AFG 1997 new_sp_m014 0
## 2 Afghanistan AF AFG 1998 new_sp_m014 30
## 3 Afghanistan AF AFG 1999 new_sp_m014 8
## 4 Afghanistan AF AFG 2000 new_sp_m014 52
## 5 Afghanistan AF AFG 2001 new_sp_m014 129
## 6 Afghanistan AF AFG 2002 new_sp_m014 90
## 7 Afghanistan AF AFG 2003 new_sp_m014 127
## 8 Afghanistan AF AFG 2004 new_sp_m014 139
## 9 Afghanistan AF AFG 2005 new_sp_m014 151
## 10 Afghanistan AF AFG 2006 new_sp_m014 193
## # ... with 76,036 more rows
可以通过对key计数,来猜key的结构
who1 %>%
count("key")
## # A tibble: 1 x 2
## `"key"` n
## <chr> <int>
## 1 key 76046
newrel应该为new_rel,需要用stringr::str_replace处理一下
who2 <- who1 %>%
mutate(key = stringr::str_replace(key, "newrel", "new_rel"))
who2
## # A tibble: 76,046 x 6
## country iso2 iso3 year key cases
## <chr> <chr> <chr> <int> <chr> <int>
## 1 Afghanistan AF AFG 1997 new_sp_m014 0
## 2 Afghanistan AF AFG 1998 new_sp_m014 30
## 3 Afghanistan AF AFG 1999 new_sp_m014 8
## 4 Afghanistan AF AFG 2000 new_sp_m014 52
## 5 Afghanistan AF AFG 2001 new_sp_m014 129
## 6 Afghanistan AF AFG 2002 new_sp_m014 90
## 7 Afghanistan AF AFG 2003 new_sp_m014 127
## 8 Afghanistan AF AFG 2004 new_sp_m014 139
## 9 Afghanistan AF AFG 2005 new_sp_m014 151
## 10 Afghanistan AF AFG 2006 new_sp_m014 193
## # ... with 76,036 more rows
使用seperate函数分离各个变量
who3 <- who2 %>%
separate(key, c("new", "type", "sexage"), sep = "_")
who3
## # A tibble: 76,046 x 8
## country iso2 iso3 year new type sexage cases
## <chr> <chr> <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan AF AFG 1997 new sp m014 0
## 2 Afghanistan AF AFG 1998 new sp m014 30
## 3 Afghanistan AF AFG 1999 new sp m014 8
## 4 Afghanistan AF AFG 2000 new sp m014 52
## 5 Afghanistan AF AFG 2001 new sp m014 129
## 6 Afghanistan AF AFG 2002 new sp m014 90
## 7 Afghanistan AF AFG 2003 new sp m014 127
## 8 Afghanistan AF AFG 2004 new sp m014 139
## 9 Afghanistan AF AFG 2005 new sp m014 151
## 10 Afghanistan AF AFG 2006 new sp m014 193
## # ... with 76,036 more rows
将冗余的new,iso2,iso3丢掉
who3 %>%
count("new")
## # A tibble: 1 x 2
## `"new"` n
## <chr> <int>
## 1 new 76046
who4 <- who3 %>%
select(-new, -iso2, -iso3)
将性别与年龄分开
who5 <- who4 %>%
separate(sexage, c("sex", "age"), sep = 1)
who5
## # A tibble: 76,046 x 6
## country year type sex age cases
## <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan 1997 sp m 014 0
## 2 Afghanistan 1998 sp m 014 30
## 3 Afghanistan 1999 sp m 014 8
## 4 Afghanistan 2000 sp m 014 52
## 5 Afghanistan 2001 sp m 014 129
## 6 Afghanistan 2002 sp m 014 90
## 7 Afghanistan 2003 sp m 014 127
## 8 Afghanistan 2004 sp m 014 139
## 9 Afghanistan 2005 sp m 014 151
## 10 Afghanistan 2006 sp m 014 193
## # ... with 76,036 more rows
连起来构造一个复杂的管道
who %>%
gather(key, value, new_sp_m014:newrel_f65, na.rm = TRUE) %>%
mutate(key = stringr::str_replace(key, "newrel", "new_rel")) %>%
separate(key, c("new", "var", "sexage")) %>%
select(-new, -iso2, -iso3) %>%
separate(sexage, c("sex", "age"), sep = 1)
## # A tibble: 76,046 x 6
## country year var sex age value
## <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan 1997 sp m 014 0
## 2 Afghanistan 1998 sp m 014 30
## 3 Afghanistan 1999 sp m 014 8
## 4 Afghanistan 2000 sp m 014 52
## 5 Afghanistan 2001 sp m 014 129
## 6 Afghanistan 2002 sp m 014 90
## 7 Afghanistan 2003 sp m 014 127
## 8 Afghanistan 2004 sp m 014 139
## 9 Afghanistan 2005 sp m 014 151
## 10 Afghanistan 2006 sp m 014 193
## # ... with 76,036 more rows
非tidy data
- 空间或性能优势;
- 专门领域的特定存储约定;