学习《R for Data Science》(6)——Tidy

王致远

2019/01/28

本章需要用到tidyr包

library(plyr)
library(tidyverse)
library(ggplot2)
library(pryr)

tidy data

同一组数据有多种表达方式

tidy data的定义:

  1. Each variable must have its own column.
  2. Each observation must have its own row.
  3. Each value must have its own cell.

为什么要tidy data?

  1. 有一种一以贯之的数据存储方式;
  2. 适应于R的向量化;
table1
## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583
table1 %>% 
  count(year, wt=cases)
## # A tibble: 2 x 2
##    year      n
##   <int>  <int>
## 1  1999 250740
## 2  2000 296920

相当于

ddply(table1,"year",function(x) sum(x[["cases"]]))
##   year     V1
## 1 1999 250740
## 2 2000 296920

Spreading and gathering

得到清洁数据的步骤:

  1. 指出什么是变量,什么是观测;
  2. 解决以下两个问题:
    1. 一个变量下的内容展开到了多个列中;
    2. 一个观测分散在多个行中;

需要tidyr的工具:

Gathering

一个常见问题:一些列名不是变量,而是观测值;

table4a
## # A tibble: 3 x 3
##   country     `1999` `2000`
## * <chr>        <int>  <int>
## 1 Afghanistan    745   2666
## 2 Brazil       37737  80488
## 3 China       212258 213766

每一行有两个观测值,而不是一个。

使用gather函数进行聚合

table4a %>% 
  gather(`1999`, `2000`, key = "year", value = "cases")
## # A tibble: 6 x 3
##   country     year   cases
##   <chr>       <chr>  <int>
## 1 Afghanistan 1999     745
## 2 Brazil      1999   37737
## 3 China       1999  212258
## 4 Afghanistan 2000    2666
## 5 Brazil      2000   80488
## 6 China       2000  213766

相当于reshape2::melt函数

reshape2::melt(table4a,"country")
##       country variable  value
## 1 Afghanistan     1999    745
## 2      Brazil     1999  37737
## 3       China     1999 212258
## 4 Afghanistan     2000   2666
## 5      Brazil     2000  80488
## 6       China     2000 213766

再一例

table4b
## # A tibble: 3 x 3
##   country         `1999`     `2000`
## * <chr>            <int>      <int>
## 1 Afghanistan   19987071   20595360
## 2 Brazil       172006362  174504898
## 3 China       1272915272 1280428583
table4b %>% 
  gather(`1999`, `2000`, key = "year", value = "population")
## # A tibble: 6 x 3
##   country     year  population
##   <chr>       <chr>      <int>
## 1 Afghanistan 1999    19987071
## 2 Brazil      1999   172006362
## 3 China       1999  1272915272
## 4 Afghanistan 2000    20595360
## 5 Brazil      2000   174504898
## 6 China       2000  1280428583

将两个数据框聚合,使用left_join

tidy4a <- table4a %>% 
  gather(`1999`, `2000`, key = "year", value = "cases")
tidy4b <- table4b %>% 
  gather(`1999`, `2000`, key = "year", value = "population")
left_join(tidy4a, tidy4b)
## Joining, by = c("country", "year")
## # A tibble: 6 x 4
##   country     year   cases population
##   <chr>       <chr>  <int>      <int>
## 1 Afghanistan 1999     745   19987071
## 2 Brazil      1999   37737  172006362
## 3 China       1999  212258 1272915272
## 4 Afghanistan 2000    2666   20595360
## 5 Brazil      2000   80488  174504898
## 6 China       2000  213766 1280428583

Spreading

table2
## # A tibble: 12 x 4
##    country      year type            count
##    <chr>       <int> <chr>           <int>
##  1 Afghanistan  1999 cases             745
##  2 Afghanistan  1999 population   19987071
##  3 Afghanistan  2000 cases            2666
##  4 Afghanistan  2000 population   20595360
##  5 Brazil       1999 cases           37737
##  6 Brazil       1999 population  172006362
##  7 Brazil       2000 cases           80488
##  8 Brazil       2000 population  174504898
##  9 China        1999 cases          212258
## 10 China        1999 population 1272915272
## 11 China        2000 cases          213766
## 12 China        2000 population 1280428583

每一个观测被分到了两行里

table2 %>%
    spread(key = type, value = count)
## # A tibble: 6 x 4
##   country      year  cases population
##   <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

相当于reshape2::dcast

reshape2::dcast(table2,country+year~type)
## Using count as value column: use value.var to override.
##       country year  cases population
## 1 Afghanistan 1999    745   19987071
## 2 Afghanistan 2000   2666   20595360
## 3      Brazil 1999  37737  172006362
## 4      Brazil 2000  80488  174504898
## 5       China 1999 212258 1272915272
## 6       China 2000 213766 1280428583

Separating and uniting

table3
## # A tibble: 6 x 3
##   country      year rate             
## * <chr>       <int> <chr>            
## 1 Afghanistan  1999 745/19987071     
## 2 Afghanistan  2000 2666/20595360    
## 3 Brazil       1999 37737/172006362  
## 4 Brazil       2000 80488/174504898  
## 5 China        1999 212258/1272915272
## 6 China        2000 213766/1280428583

Separate

separate()将一列的内容(字符串)分散到多列

table3 %>% 
  separate(rate, into = c("cases", "population"))
## # A tibble: 6 x 4
##   country      year cases  population
## * <chr>       <int> <chr>  <chr>     
## 1 Afghanistan  1999 745    19987071  
## 2 Afghanistan  2000 2666   20595360  
## 3 Brazil       1999 37737  172006362 
## 4 Brazil       2000 80488  174504898 
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

确实方便很多,省略了很多步骤。

table3 %>% 
  separate(rate, into = c("cases", "population"), sep = "/")
## # A tibble: 6 x 4
##   country      year cases  population
## * <chr>       <int> <chr>  <chr>     
## 1 Afghanistan  1999 745    19987071  
## 2 Afghanistan  2000 2666   20595360  
## 3 Brazil       1999 37737  172006362 
## 4 Brazil       2000 80488  174504898 
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

sep是正则表达式

但直接转换过来的变量都是字符串,可以让它自动匹配更合适的数据类型

table3 %>% 
  separate(rate, into = c("cases", "population"), convert = TRUE)
## # A tibble: 6 x 4
##   country      year  cases population
## * <chr>       <int>  <int>      <int>
## 1 Afghanistan  1999    745   19987071
## 2 Afghanistan  2000   2666   20595360
## 3 Brazil       1999  37737  172006362
## 4 Brazil       2000  80488  174504898
## 5 China        1999 212258 1272915272
## 6 China        2000 213766 1280428583

也可以给sep传入一个数字向量,代表了seperate的位置

table3 %>% 
  separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 x 4
##   country     century year  rate             
## * <chr>       <chr>   <chr> <chr>            
## 1 Afghanistan 19      99    745/19987071     
## 2 Afghanistan 20      00    2666/20595360    
## 3 Brazil      19      99    37737/172006362  
## 4 Brazil      20      00    80488/174504898  
## 5 China       19      99    212258/1272915272
## 6 China       20      00    213766/1280428583

Unite

seperate的逆运算,将多个列合并为一个列

table5
## # A tibble: 6 x 4
##   country     century year  rate             
## * <chr>       <chr>   <chr> <chr>            
## 1 Afghanistan 19      99    745/19987071     
## 2 Afghanistan 20      00    2666/20595360    
## 3 Brazil      19      99    37737/172006362  
## 4 Brazil      20      00    80488/174504898  
## 5 China       19      99    212258/1272915272
## 6 China       20      00    213766/1280428583
table5 %>% 
  unite(new, century, year)
## # A tibble: 6 x 3
##   country     new   rate             
##   <chr>       <chr> <chr>            
## 1 Afghanistan 19_99 745/19987071     
## 2 Afghanistan 20_00 2666/20595360    
## 3 Brazil      19_99 37737/172006362  
## 4 Brazil      20_00 80488/174504898  
## 5 China       19_99 212258/1272915272
## 6 China       20_00 213766/1280428583

去掉分隔符

table5 %>% 
  unite(new, century, year, sep = "")
## # A tibble: 6 x 3
##   country     new   rate             
##   <chr>       <chr> <chr>            
## 1 Afghanistan 1999  745/19987071     
## 2 Afghanistan 2000  2666/20595360    
## 3 Brazil      1999  37737/172006362  
## 4 Brazil      2000  80488/174504898  
## 5 China       1999  212258/1272915272
## 6 China       2000  213766/1280428583

缺失值

stocks <- tibble(
  year   = c(2015, 2015, 2015, 2015, 2016, 2016, 2016),
  qtr    = c(   1,    2,    3,    4,    2,    3,    4),
  return = c(1.88, 0.59, 0.35,   NA, 0.92, 0.17, 2.66)
)
stocks
## # A tibble: 7 x 3
##    year   qtr return
##   <dbl> <dbl>  <dbl>
## 1  2015     1   1.88
## 2  2015     2   0.59
## 3  2015     3   0.35
## 4  2015     4  NA   
## 5  2016     2   0.92
## 6  2016     3   0.17
## 7  2016     4   2.66

将隐式缺失显式化的方法:spread

stocks %>% 
  spread(year, return)
## # A tibble: 4 x 3
##     qtr `2015` `2016`
##   <dbl>  <dbl>  <dbl>
## 1     1   1.88  NA   
## 2     2   0.59   0.92
## 3     3   0.35   0.17
## 4     4  NA      2.66

另外一个显式化的方法:complete,接收几个列,寻找所有的独特组合

stocks %>% 
  complete(year, qtr)
## # A tibble: 8 x 3
##    year   qtr return
##   <dbl> <dbl>  <dbl>
## 1  2015     1   1.88
## 2  2015     2   0.59
## 3  2015     3   0.35
## 4  2015     4  NA   
## 5  2016     1  NA   
## 6  2016     2   0.92
## 7  2016     3   0.17
## 8  2016     4   2.66

一种独特的缺失值情况:缺失代表重复上一行内容

treatment <- tribble(
  ~ person,           ~ treatment, ~response,
  "Derrick Whitmore", 1,           7,
  NA,                 2,           10,
  NA,                 3,           9,
  "Katherine Burke",  1,           4
)
treatment
## # A tibble: 4 x 3
##   person           treatment response
##   <chr>                <dbl>    <dbl>
## 1 Derrick Whitmore         1        7
## 2 <NA>                     2       10
## 3 <NA>                     3        9
## 4 Katherine Burke          1        4

这时可以用fill函数填充

treatment %>% 
  fill(person)
## # A tibble: 4 x 3
##   person           treatment response
##   <chr>                <dbl>    <dbl>
## 1 Derrick Whitmore         1        7
## 2 Derrick Whitmore         2       10
## 3 Derrick Whitmore         3        9
## 4 Katherine Burke          1        4

案例分析

tidyr的设计思路和dplyr一样:每件小工具完成一个任务,用管道连接。

肺结核数据tidyr::who

names(who)
##  [1] "country"      "iso2"         "iso3"         "year"        
##  [5] "new_sp_m014"  "new_sp_m1524" "new_sp_m2534" "new_sp_m3544"
##  [9] "new_sp_m4554" "new_sp_m5564" "new_sp_m65"   "new_sp_f014" 
## [13] "new_sp_f1524" "new_sp_f2534" "new_sp_f3544" "new_sp_f4554"
## [17] "new_sp_f5564" "new_sp_f65"   "new_sn_m014"  "new_sn_m1524"
## [21] "new_sn_m2534" "new_sn_m3544" "new_sn_m4554" "new_sn_m5564"
## [25] "new_sn_m65"   "new_sn_f014"  "new_sn_f1524" "new_sn_f2534"
## [29] "new_sn_f3544" "new_sn_f4554" "new_sn_f5564" "new_sn_f65"  
## [33] "new_ep_m014"  "new_ep_m1524" "new_ep_m2534" "new_ep_m3544"
## [37] "new_ep_m4554" "new_ep_m5564" "new_ep_m65"   "new_ep_f014" 
## [41] "new_ep_f1524" "new_ep_f2534" "new_ep_f3544" "new_ep_f4554"
## [45] "new_ep_f5564" "new_ep_f65"   "newrel_m014"  "newrel_m1524"
## [49] "newrel_m2534" "newrel_m3544" "newrel_m4554" "newrel_m5564"
## [53] "newrel_m65"   "newrel_f014"  "newrel_f1524" "newrel_f2534"
## [57] "newrel_f3544" "newrel_f4554" "newrel_f5564" "newrel_f65"

因为有很多缺失值,所以先将缺失值剔除,看有什么信息

who1 <- who %>% 
  gather(new_sp_m014:newrel_f65, key = "key", value = "cases", na.rm = TRUE)
who1
## # A tibble: 76,046 x 6
##    country     iso2  iso3   year key         cases
##  * <chr>       <chr> <chr> <int> <chr>       <int>
##  1 Afghanistan AF    AFG    1997 new_sp_m014     0
##  2 Afghanistan AF    AFG    1998 new_sp_m014    30
##  3 Afghanistan AF    AFG    1999 new_sp_m014     8
##  4 Afghanistan AF    AFG    2000 new_sp_m014    52
##  5 Afghanistan AF    AFG    2001 new_sp_m014   129
##  6 Afghanistan AF    AFG    2002 new_sp_m014    90
##  7 Afghanistan AF    AFG    2003 new_sp_m014   127
##  8 Afghanistan AF    AFG    2004 new_sp_m014   139
##  9 Afghanistan AF    AFG    2005 new_sp_m014   151
## 10 Afghanistan AF    AFG    2006 new_sp_m014   193
## # ... with 76,036 more rows

可以通过对key计数,来猜key的结构

who1 %>% 
  count("key")
## # A tibble: 1 x 2
##   `"key"`     n
##   <chr>   <int>
## 1 key     76046

newrel应该为new_rel,需要用stringr::str_replace处理一下

who2 <- who1 %>% 
  mutate(key = stringr::str_replace(key, "newrel", "new_rel"))
who2
## # A tibble: 76,046 x 6
##    country     iso2  iso3   year key         cases
##    <chr>       <chr> <chr> <int> <chr>       <int>
##  1 Afghanistan AF    AFG    1997 new_sp_m014     0
##  2 Afghanistan AF    AFG    1998 new_sp_m014    30
##  3 Afghanistan AF    AFG    1999 new_sp_m014     8
##  4 Afghanistan AF    AFG    2000 new_sp_m014    52
##  5 Afghanistan AF    AFG    2001 new_sp_m014   129
##  6 Afghanistan AF    AFG    2002 new_sp_m014    90
##  7 Afghanistan AF    AFG    2003 new_sp_m014   127
##  8 Afghanistan AF    AFG    2004 new_sp_m014   139
##  9 Afghanistan AF    AFG    2005 new_sp_m014   151
## 10 Afghanistan AF    AFG    2006 new_sp_m014   193
## # ... with 76,036 more rows

使用seperate函数分离各个变量

who3 <- who2 %>% 
  separate(key, c("new", "type", "sexage"), sep = "_")
who3
## # A tibble: 76,046 x 8
##    country     iso2  iso3   year new   type  sexage cases
##    <chr>       <chr> <chr> <int> <chr> <chr> <chr>  <int>
##  1 Afghanistan AF    AFG    1997 new   sp    m014       0
##  2 Afghanistan AF    AFG    1998 new   sp    m014      30
##  3 Afghanistan AF    AFG    1999 new   sp    m014       8
##  4 Afghanistan AF    AFG    2000 new   sp    m014      52
##  5 Afghanistan AF    AFG    2001 new   sp    m014     129
##  6 Afghanistan AF    AFG    2002 new   sp    m014      90
##  7 Afghanistan AF    AFG    2003 new   sp    m014     127
##  8 Afghanistan AF    AFG    2004 new   sp    m014     139
##  9 Afghanistan AF    AFG    2005 new   sp    m014     151
## 10 Afghanistan AF    AFG    2006 new   sp    m014     193
## # ... with 76,036 more rows

将冗余的new,iso2,iso3丢掉

who3 %>% 
  count("new")
## # A tibble: 1 x 2
##   `"new"`     n
##   <chr>   <int>
## 1 new     76046
who4 <- who3 %>% 
  select(-new, -iso2, -iso3)

将性别与年龄分开

who5 <- who4 %>% 
  separate(sexage, c("sex", "age"), sep = 1)
who5
## # A tibble: 76,046 x 6
##    country      year type  sex   age   cases
##    <chr>       <int> <chr> <chr> <chr> <int>
##  1 Afghanistan  1997 sp    m     014       0
##  2 Afghanistan  1998 sp    m     014      30
##  3 Afghanistan  1999 sp    m     014       8
##  4 Afghanistan  2000 sp    m     014      52
##  5 Afghanistan  2001 sp    m     014     129
##  6 Afghanistan  2002 sp    m     014      90
##  7 Afghanistan  2003 sp    m     014     127
##  8 Afghanistan  2004 sp    m     014     139
##  9 Afghanistan  2005 sp    m     014     151
## 10 Afghanistan  2006 sp    m     014     193
## # ... with 76,036 more rows

连起来构造一个复杂的管道

who %>%
  gather(key, value, new_sp_m014:newrel_f65, na.rm = TRUE) %>% 
  mutate(key = stringr::str_replace(key, "newrel", "new_rel")) %>%
  separate(key, c("new", "var", "sexage")) %>% 
  select(-new, -iso2, -iso3) %>% 
  separate(sexage, c("sex", "age"), sep = 1)
## # A tibble: 76,046 x 6
##    country      year var   sex   age   value
##    <chr>       <int> <chr> <chr> <chr> <int>
##  1 Afghanistan  1997 sp    m     014       0
##  2 Afghanistan  1998 sp    m     014      30
##  3 Afghanistan  1999 sp    m     014       8
##  4 Afghanistan  2000 sp    m     014      52
##  5 Afghanistan  2001 sp    m     014     129
##  6 Afghanistan  2002 sp    m     014      90
##  7 Afghanistan  2003 sp    m     014     127
##  8 Afghanistan  2004 sp    m     014     139
##  9 Afghanistan  2005 sp    m     014     151
## 10 Afghanistan  2006 sp    m     014     193
## # ... with 76,036 more rows

非tidy data

  1. 空间或性能优势;
  2. 专门领域的特定存储约定;